Experimental determination of the radiation dose limit for cryocooled protein crystals.

نویسندگان

  • Robin Leslie Owen
  • Enrique Rudiño-Piñera
  • Elspeth F Garman
چکیده

Radiation damage to cryocooled protein crystals during x-ray structure determination has become an inherent part of macromolecular diffraction data collection at third-generation synchrotrons. Generally, radiation damage is an undesirable component of the experiment and can result in erroneous structural detail in the final model. The characterization of radiation damage thus has become an important area for structural biologists. The calculated dose limit of 2 x 10(7) Gy for the diffracting power of cryocooled protein crystals to drop by half has been experimentally evaluated at a third-generation synchrotron source. Successive data sets were collected from four holoferritin and three apoferritin crystals. The absorbed dose for each crystal was calculated by using the program raddose after measurement of the incident photon flux and determination of the elemental crystal composition by micro-particle-induced x-ray emission. Degradation in diffraction quality and specific structural changes induced by synchrotron radiation then could be compared directly with absorbed dose for different dose/dose rate regimes: a 10% lifetime decrease for a 10-fold dose rate increase was observed. Remarkable agreement both between different crystals of the same type and between apoferritin and holoferritin was observed for the dose required to reduce the diffracted intensity by half (D(1/2)). From these measurements, a dose limit of D(1/2) = 4.3 (+/-0.3) x10(7) Gy was obtained. However, by considering other data quality indicators, an intensity reduction to I(ln2) = ln2 x I(0), corresponding to an absorbed dose of 3.0 x 10(7) Gy, is recommended as an appropriate dose limit for typical macromolecular crystallography experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards an understanding of radiation damage in cryocooled macromolecular crystals.

Interest in radiation damage is growing rapidly owing to the surge in macromolecular crystallography experiments carried out at modern brilliant synchrotron macromolecular crystallography beamlines. Work on the characterization of radiation damage in cryocooled protein crystals is starting to have some impact on our understanding of the problem and of how damage might be affecting both the proc...

متن کامل

Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser.

To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure deter...

متن کامل

Radiation damage in protein crystals is reduced with a micron-sized X-ray beam.

Radiation damage is a major limitation in crystallography of biological macromolecules, even for cryocooled samples, and is particularly acute in microdiffraction. For the X-ray energies most commonly used for protein crystallography at synchrotron sources, photoelectrons are the predominant source of radiation damage. If the beam size is small relative to the photoelectron path length, then th...

متن کامل

Protein microcrystallography using synchrotron radiation

The progress in X-ray microbeam applications using synchrotron radiation is beneficial to structure determination from macromolecular microcrystals such as small in meso crystals. However, the high intensity of microbeams causes severe radiation damage, which worsens both the statistical quality of diffraction data and their resolution, and in the worst cases results in the failure of structure...

متن کامل

Determination of radiation dose rates and urinary activity of patients received Sodium Iodide-131 for treatment of differentiated thyroid carcinoma [Persian]

Sodium Iodide-131 is administrated for treatment of hyperthyroidism and thyroid cancer. Iodine-131 has multiple routs of excretion (Urine, saliva, sweat, milk, feces, exhalation) from the body. Patients receiving Sodium Iodide-131 therapy exposes other persons and the environment to unwanted radiation and contamination. The major source of radiation dose from administration of Iodine-131 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 13  شماره 

صفحات  -

تاریخ انتشار 2006